为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0⩽x<30
4
B
30⩽x<60
16
C
60⩽x<90
a
D
90⩽x<120
b
E
x⩾120
2
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有 人,a+b= ,m= ;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60⩽x<120范围的人数.
某养猪专业户每年的养猪成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养猪专业户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.
先化简,再求值:,其中.
如图,抛物线y=﹣x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中﹣3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t= ;当0<x≤4时,y2与x的函数关系为:y2= ;当 <x< 时,y2=100;(2)(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)