(本题12分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点. (1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1︰2; (2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
在网格图中,画出相应的图形. (1)将图形沿x轴负方向平移3个单位,得到△A1B1C1; (2)关于x轴对称,得到△A2B2C2; (3)以点C2为位似中心,各边扩大到原来的2倍,得到△A3B3C3.
(陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸). ①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米; ②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米. 根据以上测量过程及测量数据,请你求出河宽BD是多少米.
(浙江绍兴)课本中有一道作业题: 小颖解得此题的答案为48mm.小颖善于反思,她又提出了如下的问题. (1)如果原题中所要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成的,如图,此时,这个矩形零件的两条边长又分别为多少mm?请你计算; (2)如果原题中所要加工的零件只是一个矩形,如图,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
如图,王华在晚上由路灯A走向路灯B,当他走到点P时,发现身后的影子的顶部刚好接触到路灯A的底部;当他向前走12m到达Q时,发现身前他的影子的顶部刚好接触到路灯B的底部.已知王华的身高为1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离AB; (2)当王华走到路灯B时,他在路灯A照射下的影长为多少?