如图,在平面直角坐标系中,抛物线y=ax2+2ax-3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=-1时,抛物线顶点D的坐标为 ,OE= ;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°⩽β⩽60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根. (1)求实数k的取值范围; (2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
如图,一个正比例函数y1=k1x的图象与一个一次函数y2=k2x+b的图象相交于点A(3,4),且一次函数y2的图像与y轴相交于点B(0,—5),与x轴交于点C. (1)判断△AOB的形状并说明理由; (2)若将直线AB绕点A旋转,使△AOC的面积为8,求旋转后直线AB的函数解析式; (3)在x轴上求一点P使△POA为等腰三角形,请直接写出所有符合条件的点P的坐标.
已知y-3与4x-2成正比例,且当x=1时,y=5. (1)求y与x的函数关系式; (2)求当x=-2时的函数值.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处, (1)求D、E两点的坐标. (2)求过D、E两点的直线函数表达式
如图是一块地的平面图,其中AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.