已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点. (1)求含有常数a的抛物线的解析式; (2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD = PH; (3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD = 4,求a的值.
如图,E、F是平行四边形ABCD对角线BD上的两点,请你添上一个适当的条件:,使四边形AECF为平行四边形.
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数. (2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由. (3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.
已知关于x的方程 (1)求证:不论k取什么实数值,这个方程总有实数根; (2)若等腰三角形ABC的一边长,另两边的长b,c恰好是这个方程的两根,求△ABC的周长。
如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°。点P是线段BC边上一动点(包括B、C两点),设PB的长是x。 (1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形。 (2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形。 (3)P在BC 上运动时,以点P、A、D、E为顶点的四边形能否为菱形。
如图,在直角梯形中,,动点从开始沿边向以的速度运动;动点从点开始沿边向以的速度运动。、分别从点、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为。 (1)当为何值时,四边形平行为四边形? (2)当为何值时,四边形为等腰梯形?