如图①,在RtΔABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB-BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AQ的长;(用含t的代数式表示)
(2)连结PQ,当PQ与ΔABC的一边平行时,求t的值;
(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与ΔABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.
如图,已知抛物线()的对称轴为直线,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B. (1)若直线经过B、C两点,求直线BC和抛物线的解析式; (2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标; (3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.
观察下表 我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题: (1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为; (2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16, ①求x,y的值; ②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题: (1)图1中"统计与概率"所在扇形的圆心角为度; (2)图2、3中的 a = , b = ; (3)在60课时的总复习中,唐老师应安排多少课时复习"图形与几何"内容?
如图,在△ABC中,D.E分别是AB、AC边的中点.求证:DEBC.
如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据,)