如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型. (1)这个几何体模型的名称是 . (2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图. (3)若h=a+b,且a,b满足a2+b2﹣a﹣6b+10=0,求该几何体的表面积.
如图是由梯子A B和梯子AC搭成的脚手架,其中AB=AC=5米,∠α=70°. (1)求梯子顶端A离地面的高度AD的长和两梯脚之间的距离BC的长. (2)生活经验告诉我们,增大两梯脚之间的距离可降低梯子的高度,若BC长达到6米,则梯子的高度下降多少米?(以上结果均精确到0.1米,供参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动. (1)请你画树状图或列表表示所有等可能的结果. (2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)
解方程:.
下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是(). ①a>0; ②9<m<16; ③k≤9; ④b2≤4a(c﹣k).
A.①② B.③④ C.①②④ D.①③④