已知各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有 2Sn=2.函数f(x)=x2+x,数列{bn}的首项b1=.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令求证:{cn}是等比数列并求{cn}通项公式;(Ⅲ)令dn=an•cn,(n为正整数),求数列{dn}的前n项和Tn.
已知函数,. (Ⅰ)当,时,求的单调区间; (2)当,且时,求在区间上的最大值.
设数列满足:,,. (Ⅰ)求的通项公式及前项和; (Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.
已知向量,,设函数,. (Ⅰ)求的最小正周期与最大值; (Ⅱ)在中, 分别是角的对边,若的面积为,求的值.
已知函数,. (Ⅰ) 求的值; (Ⅱ) 若,,求.
设函数 (Ⅰ)证明对每一个,存在唯一的,满足; (Ⅱ)由(Ⅰ)中的构成数列,判断数列的单调性并证明; (Ⅲ)对任意,满足(Ⅰ),试比较与的大小.