某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.
(本小题满分16分) 已知函数,,. (1)当时,若函数在区间上是单调增函数,试求的取值范围; (2)当时,直接写出(不需给出演算步骤)函数()的单调增区间; (3)如果存在实数,使函数,()在处取得最小值,试求实数的最大值.
(本小题满分16分) 椭圆:的左、右顶点分别、,椭圆过点且离心率. (1)求椭圆的标准方程; (2)过椭圆上异于、两点的任意一点作轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点. ①求点所在曲线的方程; ②试判断直线与以为直径的圆的位置关系, 并证明.
(本小题满分15分) 如图,在半径为的圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆上,点、在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为. (1)写出体积关于的函数关系式,并指出定义域; (2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?
(本小题满分15分) 若函数在时取得极值,且当时,恒成立. (1)求实数的值; (2)求实数的取值范围.
(本小题满分14分) 已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,交于两点. (1)求抛物线的标准方程; (2)求线段的长度.