如图,椭圆的一个焦点是,为坐标原点.(1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(2)设过点的直线交椭圆于两点.若直线绕点任意转动,则有,求的取值范围.
(本题满分13分) 如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点.(1)求证:平面;(2)求证:;(3)若,求证:平面平面.
(本小题满分13分)已知函数(1)求的值域和最小正周期;(2)若对任意,使得恒成立,求实数的取值范围.
(本小题满分13分)已知数列满足:,数列满足:,,数列的前项和为.(Ⅰ)求证:数列为等比数列;(Ⅱ)求证:数列为递增数列;(Ⅲ)若当且仅当时,取得最小值,求的取值范围.
设.(1)令,求的单调区间;(2)若当时,恒成立,求实数的取值范围;
在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.(1)若直线PA平分线段MN,求k的值; (2)当k=2时,求点P到直线AB的距离d,且求的面积.