已知直线与椭圆相交于两点.(Ⅰ)若椭圆的离心率为,焦距为2,求线段的长;(Ⅱ)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.
(本小题满分12分)为了构建和谐社会建立幸福指标体系,某地决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
(Ⅰ)求研究小组的总人数; (Ⅱ)若从研究小组的公务员和教师中随机选2人撰写研究报告,求其中恰好有1人来自公务员的概率.
(本小题满分12分)如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(Ⅰ)若,求的值;(Ⅱ)设函数,求的值域.
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列.
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为ξ,求ξ的分布列
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求甲获得这次比赛胜利的概率;(2)求经过5局比赛,比赛结束的概率.