已知直线与椭圆相交于两点.(Ⅰ)若椭圆的离心率为,焦距为2,求线段的长;(Ⅱ)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.
如图所示,正方形和矩形所在平面相互垂直,是的中点. (1)求证:; (2)若直线与平面成45o角,求异面直线与所成角的余弦值.
已知△的内角所对的边分别为且. (1)若,求的值; (2)若△的面积求的值.
已知是首项为19,公差为-2的等差数列,为的前项和. (1)求通项及; (2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
(本小题满分12分)数列中, (1)求; (2)求数列的前项和 (3)设,存在数列使得,求数列的前项和.
(本小题满分12分)设数列的前项和 (1)求的值; (2)求数列的通项公式; (3)设,证明: