选修:坐标系与参数方程 在平面直角坐标系中,直线经过点,其倾斜角是,以原点为极点,以轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程是.(Ⅰ)若直线和曲线有公共点,求倾斜角的取值范围;(Ⅱ)设为曲线任意一点,求的取值范围.
已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点. (1)求证:; (2)若四点共圆,且弧与弧相等,求.
已知函数,,其中,是自然对数的底数. (1)当时,为曲线的切线,求的值; (2)若,,且函数在区间内有零点,求实数的取值范围.
在矩形中中,,为动点,的延长线与(或其延长线)分别交于点,若 (1)若以线段所在的直线为轴,线段的中垂线为轴建立平面直角坐标系,试求动点的轨迹方程; (2)不过原点的直线与(1)中轨迹交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
棱长为1的正方体中,分别为棱的中点. (1)若平面与平面的交线为,与底面的交点为点,试求的长; (2)求点到平面的距离 .