如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC 的中点.(Ⅰ)求证:AE⊥PD;(Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角 E-AF-C的余弦值.
(本小题满分10分)选修4-4:坐标系与参数方程 已知圆锥曲线(是参数)和定点,是圆锥曲线的左、右焦点。 (1)求经过点垂直于直线的直线l的参数方程; (2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.
(本小题满分10分)选修4-1:几何证明选讲如图,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB于F。 求证:
(本小题满分12分)如图,抛物线的顶点O在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足=(-4,-12). (1)求直线l和抛物线的方程; (2)当抛物线上一动点P在点A和B之间运动时,求ΔABP面积的最大值.
(本小题满分12分)已知函数f(x)=. (1)若f(x)在上是增函数,求实数a的取值范围; (2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。
(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1, 点D是BC的中点,点E在AC上,且DE⊥A1E . (1)证明:平面A1DE⊥平面ACC1A1; (2)求直线AD和平面A1DE所成角的正弦值。