函数 (1)如果 时,有意义,确定的取值范围; (2)若值域为,求的值; (3)在(2)条件下,为定义域为的奇函数,且时,对任意的恒成立,求的取值范围.
(本小题满分10分)如图,在直三棱柱中,、分别是、的中点,点在上,. 求证:(1)EF∥平面ABC; (2)平面平面.
已知函数的定义域为,对于任意的,都有,且当时,,若.(1)求证:为奇函数;(2)求证:是上的减函数;(3)求函数在区间上的值域.
已知为定义在上的奇函数,当时,;(1)求在上的解析式;(2)试判断函数在区间上的单调性,并给出证明.
函数,(1)若的定义域为R,求实数的取值范围.(2)若的定义域为[-2,1],求实数的值
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.