选修4-1:几何证明选讲如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点.(1)证明:(2)设圆的半径为1,,延长交于点,求外接圆的半径.
(本小题满分12分)已知椭圆的左、右焦点分别为,离心率为,双曲线方程为,直线与双曲线的交点为且.(Ⅰ)求椭圆与双曲线的方程;(Ⅱ)过点的直线与椭圆交于两点,交双曲线于两点,当的内切圆的面积取最大值时,求的面积.
(本小题满分12分)数列的前项和为,且是和的等差中项,等差数列满足,.(Ⅰ)求数列、的通项公式;(Ⅱ)设,数列的前项和为,证明:.
(本小题满分12分)在中,角对应的边分别是,已知.(Ⅰ)求角的大小;(Ⅱ)若的面积,求的值.
(本小题满分12分)如图1,在直角梯形中,,,点为线段的中点,将沿折起,使平面平面,得到几何体,如图2所示.(Ⅰ)求证:平面;【理】(Ⅱ)求二面角的余弦值.【文】(Ⅱ)求点到平面的距离.
(本小题满分12分)已知圆经过、两点,且圆心在直线上.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆总有公共点,求实数的取值范围.