函数是定义在上的奇函数,且。(1)求实数a,b,并确定函数的解析式;(2)判断在(-1,1)上的单调性,并用定义证明你的结论;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
(本小题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;物理成绩依次为:72,77,80,84,88,90,93,95,①若规定90分(含90分)以上为优秀,记为这8位同学中数学和物理分数均为优秀的人数,求的分布列和数学期望;②若这8位同学的数学、物理分数事实上对应下表:
根据上表数据可知,变量与之间具有较强的线性相关关系,求出与的线性回归方程(系数精确到0.01).(参考公式:,其中,;参考数据:,,,,,,)
(本小题满分12分)“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为,救援中心测得飞船位于其南偏西方向,仰角为.救援中心测得着陆点位于其正东方向.(1)求两救援中心间的距离;(2)救援中心与着陆点间的距离.
已知函数,(1)求的定义域和值域;(2)讨论单调性.
设,已知时,有最小值,(1)求与的值;(2)在(1)的条件下,求的解集;(3)设集合,且,求实数的取值范围
已知函数.(1)求的定义域;(2)讨论的奇偶性;(3)讨论在上的单调性.