已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.
已知数列中,,且满足,(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列的通项公式.
正三棱锥的四个顶点都在半径为的球面上,其中底面的三个顶点在该球的一个大圆上,球心为,是线段的中点,过与垂直的平面分别截三棱锥和球所得平面图形的面积比为
设是函数的图象上两点,且,已知点的横坐标为。(1)求证:点的纵坐标是定值;(2)定义,其中且,①求的值;②设时,,若对于任意,不等式恒成立,试求实数的取值。
已知函数。(1)若,求函数在上的最小值;(2)若函数在上存在单调递增区间,试求实数的取值范围。
已知,命题:对任意,不等式恒成立;命题:存在,使不等式成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围。