设函数.(1)当时,求曲线在处的切线方程;(2)当时,的最大值为,求的取值范围.
(本小题满分12分)已知椭圆经过点,一个焦点是.(I)求椭圆的方程;(II)设椭圆与轴的两个交点为、,不在轴上的动点在直线上运动,直线、分别与椭圆交于点、,证明:直线经过焦点.
(本小题满分12分)为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(II)已知,,求通过测试的概率.
(本小题满分12分)如图,已知平面,是矩形,,,是中点,点在边上.(I)求三棱锥的体积;(II)求证:;(III)若平面,试确定点的位置.
(本小题满分12分)已知是函数图象的一条对称轴.(I)求的值;(II)作出函数在上的图象简图(不要求书写作图过程).
(本小题满分10分)选修4—5:不等式选讲。设正有理数是的一个近似值,令.(Ⅰ)若,求证:;(Ⅱ)求证:比更接近于.