正项数列{}的前n项和为Sn,q为非零常数.已知对任意正整数n, m,当时总成立. (1)求证:数列{}是等比数列; (2)若互不相等的正整数n, m, k成等差数列,比较 的大小; (3)(限理科生做,文科生不做)若正整数n, m, k成等差数列,求证:+≥.
如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD, . (1)证明: // 平面; (2)求三棱柱的体积.
在中,角对的边分别为,已知. (1)若,求的取值范围; (2)若,求面积的最大值.
已知函数. (Ⅰ)解不等式: ; (Ⅱ)当时, 不等式恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:(t为参数),直线与曲线C分别交于M,N. (Ⅰ)写出曲线C和直线的普通方程; (Ⅱ)若成等比数列,求a的值.
已知在中,D是AB上一点,的外接圆交BC于E,. (Ⅰ)求证:; (Ⅱ)若CD平分,且,求BD的长.