如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,顶点A的坐标为,点B在抛物线上. (1)直角顶点C的坐标为 ; (2)求抛物线的解析式; (3)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标.
计算:.
先化简,再求值: ,其中x = -2,y = .
分解下列因式: (1). (2).
问题1:如图1,在四边形ABCD中,AD∥BC,∠A=∠D,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明. 解:(1)猜想:____________________(2)猜想:____________________证明:
在△ABC中,O为内心,点E、F都在大边BC上.已知BF=BA,CE=CA.求证:∠EOF=∠ABC+∠ACB.