等腰直角△ABC的直角边AB=BC=10cm,点P、Q分别从A,C两点同时出发,均以1cm/s的速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,设P点运动时间为t,△PCQ的面积为S. (1)求出S关于t的函数关系式; (2)当P点运动几秒时,S △PCQ=S △ABC? (3)若P在B的左边时,作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.
下表为某照相馆的价目表,今逢开业周年庆,底片冲洗与照片冲洗皆打八折,小颖带了一卷底片去冲洗相纸为“布纹”的照片若干张,打折后共付了16.8元.请问小颖洗了多少张照片?
长方体甲的长宽高分别为260mm,150mm,325mm,长方体乙的地底面积为130130mm2.已知甲的体积是乙的体积的2.5倍,求乙的高.
某牛奶加工厂有鲜奶吨.若在市场上直接销售鲜奶,每吨可获取利润元;制成酸奶销售,每吨可获取利润元;制成奶片销售,每吨可获取利润元.该工厂的生产能力是:如制成酸奶,每天可加工吨;制成奶片每天可加工吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好天完成.你认为选择哪种方案获利最多,为什么?
某商场在元旦其间,开展商品促销活动,将某型号的电视机按进价提高后,打折另送元路费的方式销售,结果每台电视机仍获利元,问每台电视机的进价是多少元?
某公司向银行贷款万元,用来生产某种产品,已知该贷款的利率为(不计复利,即还贷款前两年利息不计算),每个新产品的成本是元,售价是元,应纳税款是销售额的,如果每年生产该种产品万个,并把所得利润(利润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清?