如图,小区规划在一个长56米,宽26米的长方形场地上修建三条同样宽的甬道,使其中两条与AB平行,另一条与BC平行,场地的其余部分种草,甬道的宽度为x米. (1)用含x的代数式表示草坪的总面积S= ; (2)如果每一块草坪的面积都相等,且甬道的宽为2米,那么每块草坪的面积是多少平方米?
在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ; (2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数随自变量的增大而增大的概率为 .
如图,等腰△OAB的顶角∠AOB=30°,点B在轴上,腰OA=4. (1)B点的坐标为: ; (2)画出△OAB关于轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标; (3)求出经过A1点的反比例函数解析式. (注:若涉及无理数,请用根号表示)
先化简,再求值:,其中=-.
已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.
解方程组:.