某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图像如图所示:(1)求k和b的值;(2)求旅客最多可免费携带行李的质量;(3)求行李费为4~15元时,旅客携带行李的质量为多少?
如图,点D,E在BC上,且FD∥AB,FE∥AC。 求证:△ABC∽△FDE.
如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径). (1)D为AB延长线上一点,若DC=DF,证明:OC⊥CD; (2)如图2,当F是AB的四等分点且EF·EC=时,求EC的值.
如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF. (1)求证:BF=BD; (2)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
在△ABC中,AD是△ABC的高,矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,且两邻边之比EF:FG=5:9,若AD=16cm,BC=48cm,求矩形EFGH的面积.
已知关于x的方程的两根是一个矩形两邻边的长. (1)k取何值时,方程在两个实数根; (2)当矩形的对角线长为时,求k的值.