如图,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4.求△BED 的面积.
在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.
已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.(1)求证:△CED∽△ACD;(2)求证:.
某商场为了方便顾客使用购物车,将滚动电梯由坡角30°的坡面改为坡度为1:2.4的坡面.如图,BD表示水平面,AD表示电梯的铅直高度,如果改动后电梯的坡面AC长为13米,求改动后电梯水平宽度增加部分BC的长(结果保留根号).
如图,点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,,F为AC的中点.(1)设,,试用的形式表示、;(x、y为实数)(2)作出在、上的分向量.(保留作图痕迹,不写作法,写出结论)
如图,抛物线与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.