已知中心在原点,焦点在轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段的中点.(1)求椭圆的标准方程;(2)若,求证:直线恒过定点,并求出定点坐标.
设命题:,命题:,若是的必要不充分条件,求实数的取值范围.
已知函数在区间上为增函数,且。 (1)当时,求的值; (2)当最小时, ①求的值; ②若是图象上的两点,且存在实数使得,证明:。
如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为。 (1)用表示切线的方程; (2)用表示的值和点的坐标; (3)当实数取何值时,? 并求此时所在直线的方程。
(本小题满分12分)已知数列的前项和是,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,求适合方程的的值. (Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M的最小值;若不存在,请说明理由。
如图,在矩形中,,,是的中点,以为折痕将向上折起,使为,且平面平面 (Ⅰ)求证:; (Ⅱ)求二面角的大小; (Ⅲ)求点C到面的距离.