求下列各式的值:(1);(2).
已知函数. (1)试求的值域; (2)设,若对, ,恒成立,试求实数的取值范围
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般. (Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系? 高中学生的作文水平与爱看课外书的2×2列联表
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率. 参考公式:,其中. 参考数据:
已知,(其中) ⑴求及; ⑵试比较与的大小,并说明理由.
数列首项,前项和满足等式(常数,……) (1)求证:为等比数列; (2)设数列的公比为,作数列使(……),求数列的通项公式. (3)设,求数列的前项和.
在中,已知,面积, (1)求的三边的长; (2)设是(含边界)内的一点,到三边的距离分别是 ①写出所满足的等量关系; ②利用线性规划相关知识求出的取值范围.