已知函数 (1)求曲线在处的切线方程; (2)证明:.
已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,. (Ⅰ)求证:数列是等差数列; (Ⅱ)求数列,的通项公式; (Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
如图:已知矩形所在平面与底面垂直,直角梯形中//,,,.(Ⅰ)求证:;(Ⅱ)求二面角的正弦值;(Ⅲ)在边上找一点,使所成角的余弦值为,并求线段的长.
在上海世博会期间,小红计划对事先选定的个场馆进行参观.在她选定的个场馆中,有个场馆分布在区,个场馆分布在区,个场馆分布在区.已知区的每个场馆的排队时间为小时,区和区的每个场馆的排队时间为小时.参观前小红因事只能从这个场馆中随机选定个场馆进行参观.(Ⅰ)求小红每个区都参观个场馆的概率;(Ⅱ)设小红排队时间总和为(小时),求随机变量的分布列和数学期望.
设.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)若锐角中,的对边分别为且,,,求角及边.
(本小题满分14分)已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,说明理由.