选修4-4:极坐标系与参数方程 已知曲线的参数方程为 (为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系. (1)求曲线的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为 ,求直线被曲线截得的弦长.
设数列的前n项和为,点均在函数y=-x+12的图像上.(1)写出关于n的函数表达式;(2)求证:数列是等差数列;
如图,在中, .(1)求sinA(2)记BC的中点为D,求中线AD的长.
设为正数,且.求的最小值.
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
利用基本不等式求最值:(1)若,求函数 的最小值,并求此时x的值.(2)设 ,求函数 的最大值.