如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧).已知点坐标为(,).(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8). (1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法): ①点P到A,B两点的距离相等; ②点P到∠xOy的两边的距离相等. (2)在(1)作出点P后,写出点P的坐标.
已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts. (1)当t=2s时,AB=12cm.此时, ①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是 cm/s; 点B运动的速度是 cm/s. ②若点P为直线l上一点,且PA﹣PB=OP,求的值; (2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.
为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:
如果两所学校分别单独购买服装,一共应付5000元. (1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出? (3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?
如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=23°,求∠AOB的度数.
在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形 ①画出△OAB向左平移3个单位后的三角形; ②画出△OAB绕点O旋转180°后的三角形; ③画出△OAB沿y轴翻折后的图形.