如图, 数轴上的点 A , B , C , D 表示的数分别为 − 3 , − 1 , 1 , 2 ,从 A , B , C , D 四点中任意取两点, 求所取两点之间的距离为 2 的概率 .
已知3 x+y=2,y取何值时,-1<x≤2.
如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1). (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标; (3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
先化简,再求值:÷-,其中=-.
解不等式组,把它的解集在数轴上表示出来,并求其整数解.
已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2). (1)确定上述正比例函数和反比例函数的表达式 (2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值? (3)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB//x轴,交y轴于点B;过点A作直线AC//y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为3时,请判断线段BM与DM有何数量关系,并说明理由.