如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接 EC (1) 求∠ECD的度数; (2) 若CE=5,求BC长
某市要举办冬季马拉松赛,学生会为了确定近期宣传专刊的主题,想知道学生对本次马拉松赛路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了如图两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小;(3)若该校共有1 200名学生,请根据上述调查结果估计该校学生中对本次马拉松赛路线达到了“了解”和“基本了解”程度的总人数.
在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M .使⊙M与直线OM的另一交点为点B,与轴、轴的另一交点分别为点D、A(如图),连接AM.点P是上的动点. (1)∠AOB的度数为 . (2)Q是射线OP上的点,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E. ①当QE与⊙M相切时,求点E的坐标; ②在①的条件下,在点P运动的整个过程中,求△ODQ面积的最大值及点Q经过的路径长.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.
如图,以点P为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.
如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.