在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M .使⊙M与直线OM的另一交点为点B,与轴、轴的另一交点分别为点D、A(如图),连接AM.点P是上的动点. (1)∠AOB的度数为 . (2)Q是射线OP上的点,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E. ①当QE与⊙M相切时,求点E的坐标; ②在①的条件下,在点P运动的整个过程中,求△ODQ面积的最大值及点Q经过的路径长.
A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?
已知,求代数式的值.
先化简再求值:当时,求代数式的值.
解方程
如图,P1是反比例函数在第一象限图像上的一点,点A1的坐标为(2,0). (1)当点P1的横坐标逐渐增大时,△P1O A1的面积 将如何变化? (2)若△P1O A1与△P2 A1 A2均为等边三角形,求 此反比例函数的解析式及A2点的坐标.