如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.
一个正方形的边长增加后的正方形面积比它的边长增加后的面积多.若设原来这个正方形的边长为,(1)当边长增加3 时,则正方形的面积为 ;当边长增加后,正方形的面积为 .(均用含的代数式表示)(2)求原来这个正方形的面积
已知,.(1)求的值;(2)求的值.
先化简,再求值(每小题6分,计12分):(1),其中; (2),其中=-2。
(本小题10分)已知二次函数( b,c为常数).(Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.
(本小题10分) 将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.
图①