已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.
.求函数的定义域
化简:。
(本小题满分15分)已知A、B、C是直线上的不同的三点,O是直线外一点,向量、、满足,记.(1)求函数的解析式;(2)若,,证明:不等式成立;(3)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.(Ⅰ)写出抛物线的标准方程;(Ⅱ)若,求直线的方程;(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分14分)如图,三棱柱中,侧面底面,,且,O为中点.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.