已知正方形ABCD,PA⊥平面ABCD,且,E是AB中点.(1)求证:AE⊥平面PBC;(2)求点E到平面PAC的距离.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数.(1)求的值; (2)若,求的值.
.(本小题满分14分)设函数(为自然对数的底数),().(1)证明:;(2)当时,比较与的大小,并说明理由;(3)证明:().
(本小题满分14分)已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求的取值范围.
(本小题满分14分)等比数列的各项均为正数,成等差数列,且.(1)求数列的通项公式;(2)设,求数列的前项和.
(本小题满分14分)如图5所示,在三棱锥中,,平面平面,于点, ,,.(1)证明△为直角三角形;(2)求直线与平面所成角的正弦值