已知正方形ABCD,PA⊥平面ABCD,且,E是AB中点.(1)求证:AE⊥平面PBC;(2)求点E到平面PAC的距离.
已知tanα是关于x的方程的一个实根,且α是第三象限角. (1)求的值; (2)求的值.
如图在直三棱柱中已知AB=BC=1,,,D是上的点,且 (1)求AD与C1B1所成的角的大小; (2)求二面角的余弦值.
已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为. (1)求的顶点、的坐标; (2)若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程.
如图,在四棱锥中,是正方形,平面,,分别是的中点. (1)求证:平面平面; (2)在线段上确定一点,使平面,并给出证明.
(1)求与直线垂直,且与原点的距离为6的直线方程; (2)求经过直线与的交点,且平行于直线的直线方程.