某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).(Ⅰ)求样本容量n和频率分布直方图中y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在的概率.
已知函数f(x)=-alnx,a∈R.(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅱ)对(Ⅰ)中的φ(a),(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:对一切正整数n,有++…+<.
在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为2,求b+c.
已知函数f(x)=+aln(x-1)(a∈R).(Ⅰ)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;(Ⅱ)当a=2时,求证:1-<2ln(x-1)<2x-4(x>2);(Ⅲ)求证:++…+<lnn<1++ +(n∈N*,且n≥2).