某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).(Ⅰ)求样本容量n和频率分布直方图中y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在的概率.
已知函数 (1)求函数的定义域; (2)求函数的零点; (3)若函数的最小值为,求的值.
计算 (1) (2)
已知全集,集合,, (1)求. (2)若集合是集合A的子集,求实数k的取值范围.
如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且. (1)建立适当的坐标系,求椭圆方程; (2)如果椭圆上两点使直线与轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.
已知函数,且在处取得极值. (1)求的值; (2)若当时,恒成立,求的取值范围; (3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.