某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)求出关于的线性回归方程,并在坐标系中画出回归直线; (2)试预测加工个零件需要多少小时? (注:,,,)
已知函数 (1)判断函数的奇偶性,并说明理由; (2) 若函数数在区间上是增函数,求实数a的取值范围。
设函数,其中。 (Ⅰ)当时,求不等式的解集 (Ⅱ)若不等式的解集为,求a的值。
在直角坐标系xOy中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2 (Ⅰ)求C2的方程 (Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
如图,,分别为的边,上的点,且不与的顶点重合。已知的长为,,的长是关于的方程x2-14x+mn=0的两个根。 (Ⅰ)证明:,,,四点共圆; (Ⅱ)若,且,求,,,所在圆的半径。
已知函数,函数 ⑴当时,求函数的表达式; ⑵若,函数在上的最小值是2 ,求的值; ⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.