某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系.(1)若最大拱高为6米,则隧道设计的拱宽是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小. 现隧道口的最大拱高不小于6米,则应如何设计拱高和拱宽,使得隧道口截面面积最小?(隧道口截面面积公式为)
本题满分12分)某超市为促销商品,特举办“购物有奖100%中奖”活动,凡消费者在该超市购物满10元,可获得一次摇奖机会,购物满20元,可获得两次摇奖机会,以此类推,摇奖机结构如图,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋为一等奖,奖金2元,落入B袋为二等奖,奖金1元,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是(I)求摇奖两次均获得一等奖的概率;(II)某消费者购物满20元,摇奖后所得奖金为X元,试求X的分布列与期望;(III)若超市同时举行购物八八折让利于消费者活动(打折后不能再参加摇奖),某消费者刚好消费20元,请问他是选择摇奖还是选择打折比较划算。
如图:山顶上有一塔,为了测量塔高,测量人员在山脚下A点处测得塔底C的仰角为,移动am后到达B点,又测得塔底C点的仰角为,测得塔尖D点的仰角为,求塔高CD
已知等比数列{an}满足a1+a6=11,且a3a4=.(1)求数列{an}的通项an;(2)如果至少存在一个自然数m,恰使,,am+1+这三个数依次成等差数列,问这样的等比数列{an}是否存在?若存在,求出通项公式;若不存在,请说明理由.
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最大值为正数,求a的取值范围.
某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.