如图,已知直三棱柱中,,、分别为、中点,.(1)求证:平面;(2)求证:平面平面
已知. (Ⅰ)解不等式; (Ⅱ)对于任意的,不等式恒成立,求的取值范围.
设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设与轴交于点,向量. (Ⅰ)求动点的轨迹方程; (Ⅱ)设点,求的最小值.
如图△为直角三角形,,以为直径的圆交于点,点是边的中点,连交圆于点. (Ⅰ)求证:、、、四点共圆; (Ⅱ)设,,求的长.
已知函数且. (Ⅰ)当时,求在点处的切线方程; (Ⅱ)若函数在区间上为单调函数,求的取值范围.
设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
(Ⅰ)求曲线、的标准方程; (Ⅱ)设直线过抛物线的焦点,与椭圆交于不同的两点、,当时,求直线的方程.