设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设与轴交于点,向量.(Ⅰ)求动点的轨迹方程;(Ⅱ)设点 ,求的最小值.
已知函数y=sinx+cosx,x∈R. (1)当函数y取得最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
已知函数y=cos2x+sinxcosx+1,x∈R. (1)当函数y取得最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
作出函数y=|sinx|+|cosx|,x∈[0,π]的图象,并写出函数的值域.
如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)(x∈R)的最大值是1,其图象经过点M(,). (1)求f(x)的解析式;(2)已知α,β∈(0,),且,,求f(α-β)的值.