设是公比为正数的等比数列,,(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前项和.
设、是椭圆上的两点,点是线段的中点,线段的垂直平分线与椭圆相交于、两点.(Ⅰ)求直线的方程;(Ⅱ)求以线段的中点为圆心且与直线相切的圆的方程.
已知等差数列{an}的前三项为,记前n项和为Sn(Ⅰ)设,求a和k的值;(Ⅱ)设,求的值
甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字),设甲、乙所抛掷骰子朝上的面的点数分别为、,那么。(I)共有多少种不同的结果?。(II)请列出满足复数的实部大于虚部的所有结果。。(III)满足复数的实部大于虚部的概率是多少?
正方体,,为棱的中点,AC与BD交于点O.(1)求证:(2)求证:; (3)求三棱锥的体积.
在△ABC中,a、b、c分别是角A、B、C的对边,且,(Ⅰ)求角B的大小;(Ⅱ)若最大边的边长为,且,求最小边长