设集合,记的含有三个元素的子集个数为,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为.(1)求,,,的值;(2)猜想的表达式,并证明之.
围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽的进出口,如图所示.已知旧墙的维修费用为,新墙的造价为.设利用旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元).(1)将表示为的函数,并写出此函数的定义域;(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
等差数列的前n项和为,已知,为整数,且.(1)求的通项公式;(2)设,求数列的前n项和.
在中,角所对的边分别为,且满足,.(1)求的面积;(2)若,求的值.
已知函数.(1)求的最小正周期;(2)设,求的值域和单调递增区间.
已知向量.(1)求与的夹角的余弦值;(2)若向量与平行,求的值.