(本小题满分10分)选修4-4;坐标系与参数方程已知在平面直角坐标系内,点 在曲线C:为参数)上运动.以为极轴建立极坐标系,直线的极坐标方程为(Ⅰ)写出曲线C的标准方程和直线的直角坐标方程;(Ⅱ)若直线与曲线C相交于A、B两点,点M在曲线C上移动,试求面积的最大值.
已知方程.(1)若此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值;(3)在(2)的条件下,求以MN为直径的圆的方程.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE (2)平面PAC平面BDE(3)求二面角E-BD-A的大小。
已知圆 和圆外一点,求过点 的圆的切线方程。
已知两条直线:与:的交点,求满足下列条件的直线方程(1)过点P且过原点的直线方程;(2)过点P且垂直于直线:直线的方程;(10分)
(本小题满分12分)已知甲船正在大海上航行。当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:)。(1) 试问乙船航行速度的大小;(2) 试问乙船航行的方向(试用方位角表示,譬如北偏东…度)。