如图所示,是两个垃圾中转站,在的正东方向千米处,的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂. 垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大). 现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨,问垃圾发电厂该如何选址才能同时满足上述要求?
求下列函数的最大值和最小值. (1)y=; (2)y=3+2cos.
(本大题10分) 已知函数. (Ⅰ)求不等式的解集; (Ⅱ)如果的解集不是空集,求实数的取值范围.
(本大题10分) 曲线为参数,在曲线上求一点,使它到直线为参数的距离最小,求出该点坐标和最小距离.
(本大题10分) 如图,为⊙的直径,切⊙于点,交⊙于点,,点在上.求证:是⊙的切线.
(本大题12分) 已知函数函数的图象与的图象关于直线对称,. (Ⅰ)当时,若对均有成立,求实数的取值范围; (Ⅱ)设的图象与的图象和的图象均相切,切点分别为和,其中. (1)求证:; (2)若当时,关于的不等式恒成立,求实数的取值范围.