如图所示,是两个垃圾中转站,在的正东方向千米处,的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂. 垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大). 现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨,问垃圾发电厂该如何选址才能同时满足上述要求?
在自然数集N上定义一个函数y = f (x),已知f (1) + f (2)=5.当x为奇数时,f (x+1)-f (x)=1,当x为偶数时f (x+1)-f (x)=3. (1)求证:f (1),f (3),f (5),……,f (2n-1) (n∈N+)成等差数列. (2)求f (x)的解析式.
在数列中,an=n(n-8) -20,这个数列 (1)共有几项为负? (2)从第几项开始递增 (3)有无最小项?若有,求出最小项,若无,说明理由
在△ABC中,内角A、B、C的对边的边长分别是a、b、c、.已知 c = 2,C = . (1)若△ABC的面积等于,求a、b值 (2)若sinB=2sinA,求△ABC的面积.
如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里,在A处看灯塔已在货轮的北偏西30°,距离为8海里,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求: (1)A处与D处之间的距离. (2)灯塔C与D之间的距离.
已知双曲线 (1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点. (2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.