如图,是直角梯形,,,,又,,直线与直线所成的角为(1)求证:平面⊥平面;(2)求三棱锥的体积.
已知函数的定义域为,值域为.试求函数()的最小正周期和最值.
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为。 (Ⅰ)求椭圆的方程; (Ⅱ)已知动直线与椭圆相交于、两点。 ①若线段中点的横坐标为,求斜率的值; ②已知点,求证:为定值
若是函数的两个极值点。 (Ⅰ)若,求函数的解析式; (Ⅱ)若,求的最大值。
如图,已知直四棱柱的底面是直角梯形,,,,分别是棱,上的动点,且,,. (Ⅰ)证明:无论点怎样运动,四边形都为矩形; (Ⅱ)当时,求几何体的体积。
已知数列是各项均为正数的等比数列,且,。 (I)求数列的通项公式;(II)设求数列的前n项和Sn。