如图甲,小刚准备在C处牵牛到河边AB处饮水.(1)请用三角板作出小刚的最短路线(不考虑其它因素),并说明理由;(2)如图乙,若小刚在C处牵牛到河边AB处饮水,并且必须到河边D处观察河的水质情况,请作出小刚行走的最短路线,并说明理由.
某市气象局统计了5月1日至8日中午12时的气温(单位: ° C) ,整理后分别绘制成如图所示的两幅统计图.
根据图中给出的信息,解答下列问题:
(1)该市5月1日至8日中午时气温的平均数是 ° C ,中位数是 ° C ;
(2)求扇形统计图中扇形 A 的圆心角的度数;
(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于 20 ° C 的概率.
化简: (m+2+ 1 m )· m m + 1 .
如图, AB//CD , AD 和 BC 相交于点 O , OA=OD .求证: OB=OC .
如图,抛物线 y=a x 2 +bx+c 的图象过点 A(-1,0) 、 B(3,0) 、 C(0,3) .
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点 P ,使得 ΔPAC 的周长最小,若存在,请求出点 P 的坐标及 ΔPAC 的周长;若不存在,请说明理由;
(3)在(2)的条件下,在 x 轴上方的抛物线上是否存在点 M (不与 C 点重合),使得 S ΔPAM = S ΔPAC ?若存在,请求出点 M 的坐标;若不存在,请说明理由.
如图, ∠ABD=∠BCD=90° , DB 平分 ∠ADC ,过点 B 作 BM//CD 交 AD 于 M .连接 CM 交 DB 于 N .
(1)求证: B D 2 =AD·CD ;
(2)若 CD=6 , AD=8 ,求 MN 的长.