某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
(Ⅰ)设,,,求. (Ⅱ)已知集合,且,求的取值范围.
已知函数的定义域为. (Ⅰ)若,求实数的值; (Ⅱ)若的最小值为5,求实数的值; (Ⅲ)是否存在实数,使得恒成立?若存在求出的值,若不存在请说明理由.
已知圆C过点A(1,3),B(2,2),并且直线m: 平分圆C的面积. (Ⅰ)求圆C的方程; (Ⅱ)若过点D(0,1)且斜率为k的直线与圆C有两个不同的公共点M、N,若(O为原点),求k的值.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点. (Ⅰ)求证:MN平面BCC1B1; (Ⅱ)求证:平面A1BC平面A1ABB1.
已知函数. (Ⅰ)求最小正周期; (Ⅱ)求在区间上的最大值和最小值.