(本小题满分12分)某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分.已知甲每次抢到答题权的概率为,且答对的概率为,乙抢到答题权的概率为,且答对的概率为.(1)在一轮抢答中,甲得到0分的概率;(2)若比赛进行两轮,求甲得分的分布列及其期望.
(本小题满分15分)求函数的最大和最小值.
(本小题15分)已知,是实数,方程有两个实根,,数列满足,, (Ⅰ)求数列的通项公式(用,表示); (Ⅱ)若,,求的前项和.
(本小题满分14分)设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
在非负数构成的数表 中每行的数互不相同,前6列中每列的三数之和为1,,,,,,,均大于.如果的前三列构成的数表 满足下面的性质:对于数表中的任意一列(,2,…,9)均存在某个 使得 ⑶. 求证: (ⅰ)最小值,,2,3一定自数表的不同列. (ⅱ)存在数表中唯一的一列,,2,3使得数表 仍然具有性质.
设,是给定的两个正整数.证明:有无穷多个正整数,使得与互素.