选修4-4:坐标系与参数方程 在直角坐标系中,直线:=2,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系. (Ⅰ)求,的极坐标方程; (Ⅱ)若直线的极坐标方程为,设与的交点为, ,求的面积.
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 009]上的所有x的个数.
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=log2(x+) (x∈R);(3)f(x)=lg|x-2|.
已知f(x)=(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.(1)求证:f(x)在(-∞,+∞)上为增函数;(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.