(本小题满分14分)已知函数.(1)求的单调区间与极大值; (2)任取两个不等的正数,且,若存在使成立,求证:;(3)已知数列满足,(n∈N+),求证:(为自然对数的底数).
的内角、、的对边分别为、、。 己知. (Ⅰ)求; (Ⅱ)若,求. 、
设等比数列的前n项和为,已知求和.
(本小题满分15分) 已知 (Ⅰ)求函数上的最小值; (Ⅱ)若对一切恒成立,求实数的取值范围; (Ⅲ)证明:对一切,都有成立.
(本小题满分15分) 已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点,且满足(为坐标原点),当<时,求实数的取值范围.
(本小题满分14分) 如图,在四棱锥中,底面为平行四边形,平面,在棱上. (Ⅰ)当时,求证平面 (Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.