已知椭圆的下顶点为,到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求的最大值;(Ⅱ)若直线与圆O:相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.
已知 (1)求函数的值域; (2)求函数的最大值和最小值.
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪, 图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上. (1)设(x≥0),,求用表示的函数关系式,并求函数的定义域; (2).如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请予证明.
已知函数 (1)求函数的周期; (2)求函数的单调递增区间; (3)若时,的最小值为– 2 ,求a的值.
在分别是角A、B、C的对边,,且. (1)求角B的大小; (2)求sin A+sin C的取值范围.
已知向量=(3,-4),=(6,-3),=(5-m,-3-m). (1)若点A,B,C不能构成三角形,求实数m满足的条件; (2)若△ABC为直角三角形,求实数m的值.